贵州省遵义市航天高中2016届高三上学期第三次模拟数学(理)试题

已知集合A={0,1,2,3,4},集合B={x|x=2n,n∈A},则A∩B=(     )

A.{0}              B.{0,4}              C.{2,4}              D.{0,2,4}

答案解析:
答案及解析:

知识点:3.集合的基本运算

D

【考点】交集及其运算.

【专题】计算题.

【分析】由集合B中的元素的属性用列举法写出集合B,直接取交集即可.

【解答】解:因为集合A={0,1,2,3,4},所以集合B={x|x=2n,nA}={0,2,4,6,8},

所以A∩B={0,1,2,3,4}∩{0,2,4,6,8}={0,2,4}.

故选D.

【点评】本题考查了交集及其运算,属基础题,是会考常见题型.

     

若复数z=2i+,其中i是虚数单位,则复数z的模为(     )

A.              B.              C.              D.2

答案解析:
答案及解析:

知识点:3.复数代数形式的四则运算

C

【考点】复数求模.

【专题】数系的扩充和复数.

【分析】化简复数为a+bi的形式,然后求解复数的模.

【解答】解:复数z=2i+=2i+=2i+1﹣i=1+i.

|z|=

故选:C.

【点评】本题考查复数的乘除运算,复数的模的求法,考查计算能力.

     

某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为(     )

A.117              B.118              C.118.5              D.119.5

答案解析:
答案及解析:

知识点:2.用样本估计总体

B

【考点】茎叶图.

【专题】概率与统计.

【分析】求出22次考试分数最大为98,最小56,可求极差,从小到大排列,找出中间两数为76,76,可求中位数,从而可求此学生该门功课考试分数的极差与中位数之和.

【解答】解:22次考试分数最大为98,最小为56,所以极差为98﹣56=42,

从小到大排列,中间两数为76,76,所以中位数为76.

所以此学生该门功课考试分数的极差与中位数之和为42+76=118.

故选B.

【点评】本题考查茎叶图,考查学生分析解决问题的能力,确定极差与中位数是关键.

     

已知数列{an}的前n项和为Sn,且Sn=2(an+1),则a5=(     )

A.﹣16              B.﹣32              C.32              D.﹣64

答案解析:
答案及解析:

知识点:7.数列的通项

B

【考点】数列的求和.

【专题】计算题;等差数列与等比数列.

【分析】令n=1,由S1=2(a1+1),可得a1=﹣2,由Sn=2(an+1)①,得Sn+1=2(an+1+1)②,两式相减可得递推式,由递推式可判断{an}为等比数列,由等比数列的通项公式可得答案.

【解答】解:令n=1,得S1=2(a1+1),解得a1=﹣2,

由Sn=2(an+1)①,得Sn+1=2(an+1+1)②,

②﹣①得,an+1=2an+1﹣2an,即an+1=2an

∴{an}为以2为公比的等比数列,则a5=a1×24=﹣2×24=﹣32,

故选B.

【点评】本题考查由递推式求数列的通项,考查等比数列的通项公式,考查学生的运算求解能力,属中档题.

     

已知x=log23﹣log2,y=log0.5π,z=0.9﹣1.1,则(     )

A.x<y<z              B.z<y<x              C.y<z<x              D.y<x<z

答案解析:
答案及解析:

知识点:16函数值的大小比较

D

【考点】对数的运算性质;对数值大小的比较.

【专题】函数的性质及应用.

【分析】利用对数函数和指数函数的单调性即可得出.

【解答】解:∵y=log0.5π<log0.51=0,

0<=<1,

z=0.9﹣1.1>0.90=1.

∴y<x<z.

故选:D.

【点评】本题考查了对数函数和指数函数的单调性,属于基础题.

     

在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足,则的值为(     )

A.﹣4              B.﹣2              C.2              D.4

答案解析:
答案及解析:

知识点:4.平面向量的数量积(夹角、模)

A

【考点】平面向量数量积的运算.

【专题】计算题.

【分析】由题意可得,且,代入要求的式子化简可得答案.

【解答】解:由题意可得:,且

===﹣4

故选A

【点评】本题考查向量的加减法的法则,以及其几何意义,得到,且是解决问题的关键,属基础题.

     

下列结论错误的是(     )

A.命题:“若a>b>0,则a2>b2”的逆命题是假命题

B.若函数f(x)可导,则f′(x0)是x0为函数极值点的必要不充分条件

C.向量的夹角为钝角的充要条件是<0

D.命题p:“∃x∈R,ex≥x+1”的否定是“∀x∈R,ex<x+1”

答案解析:
答案及解析:

知识点:4.命题及其关系

C

【考点】命题的真假判断与应用.

【专题】综合题;简易逻辑.

【分析】A写出该命题的逆命题并判断真假;

Bf′(x0)=0时,x0不一定是函数的极值点,判断充分性,

x0为函数的极值点时,f′(x0)=0,判断必要性;

C向量的夹角为钝角时,<0判断必要性,

<0时,的夹角不一定是钝角,判断充分性;

D写出特称命题p的否定命题即可.

【解答】解:对于A,该命题的逆命题是“若a2>b2,则a>b>0”,它是假命题,

∵(﹣2)2>12,但﹣2<1,∴A正确;

对于B,函数f(x)可导,当f′(x0)=0时,x0不一定是函数的极值点,

如f(x)=x3在x=0时f′(x)=0,x=0不是极值点,∴充分性不成立,

当x0为函数的极值点时,f′(x0)=0,∴必要性成立,∴B正确;

对于C,当向量的夹角为钝角时,<0,必要性成立,

<0时,向量的夹角不一定是钝角,如的夹角为180°时,<0,∴C错误;

对于D,命题p:“xR,ex≥x+1”的否定是“xR,ex<x+1”,∴D正确.

故选:C.

【点评】本题通过命题的真假,考查了简易逻辑的应用问题,解题时应对每一个命题进行分析判断,以便得出正确的结果,是综合题.

     

执行如图所示的程序框图,输出的S的值为(     )

A.1              B.2              C.3              D.4

答案解析:
答案及解析:

知识点:1.算法与程序框图

C

【考点】循环结构.

【专题】算法和程序框图.

【分析】根据判断框的条件是k<27确定退出循环体的k值为27,再根据框图的流程确定算法的功能,利用约分消项法求解.

【解答】解:由判断框的条件是k<27,∴退出循环体的k值为27,

∴输出的S=1•==log327=3.

故选:C.

【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.

     

一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为(     )

A.              B.              C.              D.

答案解析:
答案及解析:

知识点:2.空间几何体的三视图和直观图

D

【考点】由三视图求面积、体积.

【专题】计算题;空间位置关系与距离.

【分析】几何体是三棱锥,根据三视图知最里面的面与底面垂直,高为2,结合直观图判定外接球的球心在SO上,利用球心到A、S的距离相等求得半径,代入球的表面积公式计算.

【解答】解:由三视图知:几何体是三棱锥,且最里面的面与底面垂直,高为2,如图:

 

其中OA=OB=OC=2,SO⊥平面ABC,且SO=2

其外接球的球心在SO上,设球心为M,OM=x,

=2﹣xx=,∴外接球的半径R=

∴几何体的外接球的表面积S=4π×=π.

故选:D.

【点评】本题考查了由三视图求几何体的外接球的表面积,考查了学生的空间想象能力及作图能力,判断几何体的特征及利用特征求外接球的半径是关键.

     

偶函数f(x)满足f(x﹣1)=f(x+1),且在x∈[0,1]时,f(x)=x2,g(x)=ln|x|,则函数f(x)与g(x)图象交点的个数是(     )

A.1              B.2              C.3              D.4

答案解析:
答案及解析:

知识点:13.函数与方程

B

【考点】抽象函数及其应用.

【专题】函数的性质及应用.

【分析】利用条件得f(x)=x2,x[﹣1,1],又周期为2,可以画出其在整个定义域上的图象,利用数形结合可得结论.

【解答】解:由f(x﹣1)=f(x+1)得f(x+2)=f(x+1+1)=f(x+1﹣1)=f(x),可知函数周期为2,且函数为偶函数,图象关于y轴对称,

又∵当x[0,1]时,f(x)=x2

∴x[﹣1,0]时,﹣x[0,1],f(﹣x)=(﹣x)2=x2

∴x[﹣1,1]时,f(x)=x2

在同一直角坐标系中做出其函数图象和g(x)=ln|x|图象,由图可知有2个交点.

故选:B.

【点评】本题考查了数形结合的数学思想,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具

     

已知点P是双曲线=1(a>0,b>0)左支上一点,F1,F2是双曲线的左右两个焦点,且=0,线段PF2的垂直平分线恰好是该双曲线的一条渐近线,则离心率为(     )

A.              B.              C.2              D.

答案解析:
答案及解析:

知识点:2.双曲线

D

【考点】双曲线的简单性质.

【专题】计算题;圆锥曲线的定义、性质与方程.

【分析】在三角形F1F2P中,点N恰好平分线段PF2,点O恰好平分线段F1F2,根据三角形的中位线定理得出ON∥PF1,从而得到∠PF1F2正切值,可设PF2=bt.PF1=at,再根据双曲线的定义可知|PF2|﹣|PF1|=2a,进而根据勾股定理建立等式求得a和b的关系,则离心率可得.

【解答】解:在三角形F1F2P中,点N恰好平分线段PF2,点O恰好平分线段F1F2

∴ON∥PF1,又ON的斜率为

∴tan∠PF1F2=

在三角形F1F2P中,设PF2=bt.PF1=at,

根据双曲线的定义可知|PF2|﹣|PF1|=2a,∴bt﹣at=2a,①

在直角三角形F1F2P中,|PF2|2+|PF1|2=4c2,∴b2t2+a2t2=4c2,②

由①②消去t,得

又c2=a2+b2

∴a2=(b﹣a)2,即b=2a,

∴双曲线的离心率是=

故选:D.

【点评】本题主要考查了双曲线的简单性质,考查了学生对双曲线定义和基本知识的掌握,属于中档题.

     

如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为(     )

A.              B.              C.              D.

答案解析:
答案及解析:

知识点:10.空间角与距离

D

【考点】轨迹方程.

【专题】综合题;空间位置关系与距离.

【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K,则D'KA=90°,得到K点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.

【解答】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K为垂足,由翻折的特征知,连接D'K,

则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是

如图当E与C重合时,AK==

取O为AD′的中点,得到△OAK是正三角形.

故∠K0A=,∴∠K0D'=

其所对的弧长为=

故选:D.

【点评】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变.本题是一个中档题目.

     

设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为    .

答案解析:
答案及解析:

知识点:3.二元一次不等式(组)与简单的线性规划

10

【考点】简单线性规划.

【专题】计算题;不等式的解法及应用.

【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y+1对应的直线进行平移,由此可得当x=3,y=﹣1时,目标函数取得最大值为10.

【解答】解:作出不等式组表示的平面区域,

得到如图的△ABC及其内部,其中A(3,1),B(0,﹣2),C(0,2)

 

 

设z=F(x,y)=2x+3y+1,将直线l:z=2x+3y+1进行平移,

当l经过点A(3,1)时,目标函数z达到最大值

∴z最大值=F(3,1)=10

故答案为:10

【点评】本题给出二元一次不等式组,求目标函数z=2x+3y+1的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.

     

已知函数f(x)=,则f(x)dx=          .

答案解析:
答案及解析:

知识点:6.微积分的基本定理

【考点】定积分.

【分析】根据微积分基本定理求出即可.

【解答】解:∵根据定积分的几何意义,就等于单位圆的面积的四分之一,

=

==

f(x)dx=+=

故答案为:

【点评】本题主要考查了微积分基本定理和定积分的几何意义,属于基础题.

     

设(5x﹣)n的展开式的各项系数和为M,二项式系数和为N,若M﹣N=240,则展开式中x的系数为         .

答案解析:
答案及解析:

知识点:3.二项式定理

150

【考点】二项式定理的应用.

【专题】计算题.

【分析】根据M﹣N=240,解得 2n 的值,可得 n=4.再求出(5x﹣n的展开式的通项公式,令x的幂指数等于1,求得r的值,即可求得展开式中x的系数.

【解答】解:由于(5x﹣n的展开式的各项系数和M与变量x无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n=4n

再由二项式系数和为N=2n,且M﹣N=240,可得 4n﹣2n=240,即 22n﹣2n﹣240=0.

解得 2n=16,或 2n=﹣15(舍去),∴n=4.

(5x﹣n的展开式的通项公式为 Tr+1=•(5x)4﹣r•(﹣1)r=(﹣1)r•54﹣r

令4﹣=1,解得 r=2,∴展开式中x的系数为 (﹣1)r•54﹣r=1×6×25=150,

故答案为 150•

【点评】本题主要考查二项式的各项系数和与二项式系数和的关系,二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

     

数列{an}满足a1=1,且对任意的正整数m,n都有am+n=am+an+mn,则=         .

答案解析:
答案及解析:

知识点:6.数列的求和

【考点】数列递推式;数列的求和.

【专题】等差数列与等比数列.

【分析】先令n=1找递推关系并求通项公式,再利用通项的特征求和,即可得到结论.

【解答】解:令n=1,得an+1=a1+an+n=1+an+n,∴an+1﹣an=n+1

用叠加法:an=a1+(a2﹣a1)+…+(an﹣an﹣1)=1+2+…+n=

所以==2(

所以==2×=

故答案为:

【点评】本题考查数列递推式,考查数列的通项与求和,考查裂项法的运用,属于中档题.

     

己知函数f(x)=sinxcosx+sin2x+(x∈R)

(1)当x∈[﹣]时,求函数f(x)的最小值和最大值;

(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=2,若向量=(1,a)与向量=(2,b)共线,求a,b的值.

答案解析:
答案及解析:

知识点:4.和角公式与倍(半)角公式

【考点】三角函数中的恒等变换应用;平面向量数量积的运算.

【专题】三角函数的图像与性质.

【分析】(1)首先,化简函数解析式f(x)=sin(2x﹣)+1,然后,结合x[﹣],利用三角函数的单调性求解最大值和最小值;

(2)首先,求解C的大小,然后,利用共线的条件得到b=2a,再结合余弦定理求解即可.

【解答】解:(1)∵函数f(x)=sinxcosx+sin2x+(xR)

∴f(x)=sin2x++

=sin2x﹣cos2x+1

=sin(2x﹣)+1,

∵﹣≤x≤

∴﹣≤2x﹣

∴﹣≤sin(2z﹣)≤1,

从而1﹣≤sin(2x﹣)+1≤2,

则f(x)的最小值是1﹣,最大值是2;

(2)∵f(C)=sin(2C﹣)+1=2,则sin(2C﹣)=1,

∵0<C<π,∴﹣<2C﹣

∴2C﹣=,解得C=

∵向量=(1,a)与向量=(2,b)共线,

∴b﹣2a=0,

即b=2a ①

由余弦定理得,c2=a2+b2﹣2abcos

即a2+b2﹣ab=3②

由①②解得a=1,b=2.

【点评】本题综合考查了三角恒等变换公式、三角函数的图象与性质等知识,向量共线的条件,余弦定理等知识点,考查比较综合,属于中档题.

     

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

 

5

 

女生

10

 

 

合计

 

 

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整(不用写计算过程);

(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;

(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.

下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2=,其中n=a+b+c+d)

答案解析:
答案及解析:

知识点:5.独立性检验的基本思想及其初步运用

【考点】独立性检验的应用;等可能事件的概率;离散型随机变量的期望与方差.

【专题】图表型.

【分析】(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率,做出喜爱打篮球的人数,进而做出男生的人数,填好表格.

(2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系.

(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2,通过列举得到事件数,分别计算出它们的概率,最后利用列出分布列,求出期望即可.

【解答】解:(1)列联表补充如下:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

 

喜爱打篮球

不喜爱打篮球

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50

(2)∵K2=≈8.333>7.879﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

其概率分别为P(ξ=0)=,P(ξ=1)=,P(ξ=2)=

﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

故ξ的分布列为:

ξ

0

1

2

P

﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

ξ的期望值为:Eξ=0×+1×+2×=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

【点评】本题是一个统计综合题,包含独立性检验、离散型随机变量的期望与方差和概率,本题通过创设情境激发学生学习数学的情感,帮助培养其严谨治学的态度.

     

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(1)求证:AD⊥BM;

(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

答案解析:
答案及解析:

知识点:6.直线、平面垂直的判定及其性质

【考点】用空间向量求平面间的夹角;平面与平面垂直的性质;与二面角有关的立体几何综合题.

【专题】综合题;空间位置关系与距离;空间角.

【分析】(1)先证明BM⊥AM,再利用平面ADM⊥平面ABCM,证明BM⊥平面ADM,从而可得AD⊥BM;

(2)建立直角坐标系,设,求出平面AMD、平面AME的一个法向量,利用向量的夹角公式,结合二面角E﹣AM﹣D的余弦值为,即可得出结论.

【解答】(1)证明:∵长方形ABCD中,AB=2,AD=1,M为DC的中点,

∴AM=BM=

∴BM⊥AM,

∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM平面ABCM

∴BM⊥平面ADM

∵AD平面ADM

∴AD⊥BM;

(2)建立如图所示的直角坐标系,设

则平面AMD的一个法向量

设平面AME的一个法向量为

取y=1,得,所以

因为

求得,所以E为BD的中点.

【点评】本题考查线面垂直,考查面面角,正确运用面面垂直的性质,掌握线面垂直的判定方法,正确运用向量法是关键.

     

已知椭C:=1(a>b>0)的离心率为,椭圆的短轴端点与双曲线=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.

(Ⅰ)求椭C的方程;

(Ⅱ)求的取值范围.

答案解析:
答案及解析:

知识点:1.椭圆

【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.

【专题】圆锥曲线中的最值与范围问题.

【分析】(I)由双曲线=1得焦点,得b=.又,a2=b2+c2,联立解得即可;

(II)由题意可知直线l的斜率存在,设直线l的方程为y=k(x﹣4),与椭圆方程联立得到,(4k2+3)x2﹣32k2x+64k2﹣12=0,由△>0得.设A(x1,y1),B(x2,y2),利用根与系数的关系可得=x1x2+y1y2,进而得到取值范围.

【解答】解:(I)由双曲线=1得焦点,得b=

,a2=b2+c2,联立解得a2=4,c=1.

故椭圆C的方程为

(II)由题意可知直线l的斜率存在,设直线l的方程为y=k(x﹣4),联立

(4k2+3)x2﹣32k2x+64k2﹣12=0,

由△=(﹣32k22﹣4(4k2+3)(64k2﹣12)>0得

设A(x1,y1),B(x2,y2),则

=

=x1x2+y1y2==

,∴

的取值范围为

【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到判别式△>0即根与系数的关系、数量积运算等基础知识与基本技能,属于难题.

     

已知函数f(x)=(a>0)

(Ⅰ)求证:f(x)必有两个极值点,一个是极大值点,一个是极小值点;

(Ⅱ)设f(x)的极小值点为α,极大值点为β,f(α)=﹣1,f(β)=1,求a、b的值;

(Ⅲ)在(Ⅱ)的条件下,设g(x)=f(ex),若对于任意实数x,g(x)≤恒成立,求实数m的取值范围.

答案解析:
答案及解析:

知识点:3.导数在研究函数中的应用

【考点】利用导数研究函数的极值;函数恒成立问题.

【专题】综合题;导数的综合应用.

【分析】(Ⅰ)利用极值的定义证明即可;

(Ⅱ)利用韦达定理,结合f(α)=﹣1,f(β)=1,求a、b的值;

(Ⅲ)原问题可化为m≤对一切x(﹣∞,0)∪( ),+∞)恒成立,构造函数,研究函数的值域,即可求实数m的取值范围.

【解答】(Ⅰ)证明:f′(x)=﹣

令f′(x)=ax2+2bx﹣a=0 …

△>0,∴f′(x)=0有两实根不妨记为α,β

x

(﹣∞,α)

α

(α,β)

β

(β,+∞)

f′(x)

0

+

0

f(x)

 

极小

 

极大

 

∴f(x)有两个极值点,一个极大值点一个极小值点 …

(Ⅱ)解:ax2+2bx﹣a=0,由韦达定理得α+β=﹣

∵f(α)=﹣1,f(β)=1,

∴α2+αα+b+1=0,β2﹣αβ﹣b+1=0.

∴(α+β)(α﹣β)=0…

∴α+β=0,

∴b=0,α=﹣1,β=1,∴a=2 …

(Ⅲ)解:∵g(x)=f(ex),

∴m≥0 …

当x=0时,不等式恒成立

∴原问题可化为m≤对一切x(﹣∞,0)∪(0,+∞)恒成立

设u(x)=,则u′(x)=

设h(x)=(ex﹣e﹣x)x﹣2(ex+e﹣x﹣2),

∴h′(x)=(ex+e﹣x)x﹣(ex﹣e﹣x),h″(x)=(ex﹣e﹣x)x,

当x>0时,ex>e﹣x,∴h″(x)>0,当x<0时,ex<e﹣x,∴h″(x)>0,

∴h′(x)在R上单调递增,

又∵h′(0)=0

∴当x>0时,h′(0)>0,当x<0时,h′(0)<0

∴h(x)在(﹣∞,0)上递减,(0,+∞)递增,

∴h(x)>h(0)=0 …

∴当x>0时,u′(x)>0,当x<0时,u′(x)<0,

∴u(x)在(﹣∞,0)上递减,(0,+∞)递增,

∴x→0,u(x)→1

∴0≤m≤1. …

【点评】本题考查导数知识的综合运用,考查函数的极值,考查函数的单调性,正确构造函数的关键.

     

如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,

且AE=AF.

(1)证明:B,D,H,E四点共圆;

(2)证明:CE平分∠DEF.

答案解析:
答案及解析:

知识点:1.几何证明选讲

【考点】三角形中的几何计算.

【专题】证明题;综合题.

【分析】(I),要证明B,D,H,E四点共圆,根据四点共圆定理只要证∠EBD+∠EHD=180°即可

(II)由(I)知B,D,H,E四点共圆可得∠CED=30°,要证CE平分∠DEF,只要证明∠CEF=30°即可

【解答】解:(I)在△ABC中,因为∠B=60°

所以∠BAC+∠BCA=120°

因为AD,CE是角平分线

所以∠AHC=120°

于是∠EHD=∠AHC=120°

因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆

(II)连接BH,则BH为∠ABC的平分线,得∠HBD=30°

由(I)知B,D,H,E四点共圆

所以∠CED=∠HBD=30°又∠AHE=∠EBD=60°

由已知可得,EF⊥AD,可得∠CEF=30°

所以CE平分∠DEF.

【点评】本题主要证明平面几何中四点共圆的判定理及性质定理的综合应用,解决此类问题的关键是灵活利用平面几何的定理,属于基本定理的简单运用.

     

设圆C的极坐标方程为ρ=2,以极点为直角坐标系的原点,极轴为x轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆C上的一点M(m,s)作垂直于x轴的直线l:x=m,设l与x轴交于点N,向量

(Ⅰ)求动点Q的轨迹方程;

(Ⅱ)设点R(1,0),求的最小值.

答案解析:
答案及解析:

知识点:2.坐标系与参数方程

【考点】简单曲线的极坐标方程.

【专题】计算题;转化思想;数学模型法;坐标系和参数方程.

【分析】(Ⅰ)由已知得N是坐标(m,0),设出Q(x,y),由,得到M的坐标与Q坐标的关系,然后利用M在ρ=2上求得动点Q的轨迹方程;

(Ⅱ)写出Q的参数方程,利用两点间的距离公式得到,然后利用配方法求最值.

【解答】解:(Ⅰ)由已知得N是坐标(m,0),

设Q(x,y),由,得

,则

∵点M在圆ρ=2上,即在m2+s2=4上,

∴Q是轨迹方程为

(Ⅱ)Q点的参数方程为

的最小值为

【点评】本题考查简单曲线的极坐标方程,训练了利用代入法求动点的轨迹方程,训练了利用配方法求最值,是中档题.

     

已知函数f(x)=|x﹣2|

(1)解不等式xf(x)+3>0;

(2)对于任意的x∈(﹣3,3),不等式f(x)<m﹣|x|恒成立,求m的取值范围.

答案解析:
答案及解析:

知识点:3.不等式选讲

【考点】函数恒成立问题.

【专题】不等式的解法及应用.

【分析】(1)把f(x)的解析式代入xf(x)+3>0,去绝对值后化为不等式组,求解不等式组得答案;

(2)把f(x)<m﹣|x|,分离变量m后构造分段函数,求解分段函数的最大值,从而得到m的取值范围.

【解答】解:(1)∵f(x)=|x﹣2|,

∴xf(x)+3>0x|x﹣2|+3>0①或②,

解①得:﹣1<x≤2,

解②得x>2,

∴不等式xf(x)+3>0的解集为:(﹣1,+∞);

(2)f(x)<m﹣|x|f(x)+|x|<m,即|x﹣2|+|x|<m,

设g(x)=|x﹣2|+|x|(﹣3<x<3),

g(x)在(﹣3,0]上单调递减,2≤g(x)<8;

g(x)在(2,3)上单调递增,2<g(x)<4

∴在(﹣3,3)上有2≤g(x)<8,

故m≥8时不等式f(x)<m﹣|x|在(﹣3,3)上恒成立.

【点评】本题考查函数恒成立问题,训练了绝对值不等式的解法,考查了分离变量法求求自变量的取值范围,是中档题.